Problem Statement : To build a simple K-Means model for clustering the car data into different groups. Data details ========================================== 1. Title: Car Evaluation Database========================================== The dataset is available at “http://archive.ics.uci.edu/ml/datasets/Car+Evaluation” 2. Sources: (a) Creator: Marko Bohanec (b) Donors: Marko Bohanec (marko.bohanec@ijs.si) Blaz Zupan (blaz.zupan@ijs.si) (c) Date: June, 19973. Past Usage: The hierarchical decision model, from which this dataset is derived, was first presented in M. Bohanec and V. Rajkovic: Knowledge acquisition and explanation for multi-attribute decision making. In 8th Intl Workshop on Expert Systems and their Applications, Avignon, France. pages 59-78, 1988. Within machine-learning, ...
Introduction : The goal of the blogpost is to get the beginners started with fundamental concepts of the K Means clustering Algorithm. We will mainly focus on learning to build your first K Means clustering model. The data cleaning and preprocessing parts would be covered in detail in an upcoming post. Clustering : Clustering can be considered the most important unsupervised learning problem; so, as every other problem of this kind, it deals with finding a structure in a collection of unlabeled data. A loose definition of clustering could be “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to other clusters. We can show this w...